本帖使用谷歌的预训练的Inception模型生成带有艺术感的图片。
Inception模型是Google用两个星期,使用上百万张带分类的图片训练出的模型,在做图像识别时,为了节省时间,通常使用预训练的Inception模型做为训练基础。
Deep Dream是取预训练模型的某一层(神经网络有59层,前几层学会底层特性,像线、角,经过层层抽象,最后几层可以表示更高层次的特性),然后最大化我们提供的图像和某个层相似的特性,最后生成非常有意思的图像。
关于Deep Dream:
[https://github.com/google/deepdream](https://github.com/google/deepdream)
[http://www.alanzucconi.com/2016/05/25/generating-deep-dreams/]( http://www.alanzucconi.com/2016/05/25/generating-deep-dreams/)
[http://ryankennedy.io/running-the-deep-dream/](http://ryankennedy.io/running-the-deep-dream/)
https://open_nsfw.gitlab.io(未满18岁,请绕行;自备钛合金)
下载预训练的Inception模型:
wget https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
# 解压
unzip inception5h.zip
代码:
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import cv2
inception_model = 'tensorflow_inception_graph.pb'
# 加载inception模型
graph = tf.Graph()
sess = tf.InteractiveSession(graph=graph)
X = tf.placeholder(np.float32, name='input')
with tf.gfile.FastGFile(inception_model, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
imagenet_mean = 117.0
preprocessed = tf.expand_dims(X-imagenet_mean, 0)
tf.import_graph_def(graph_def, {'input':preprocessed})
layers = [op.name for op in graph.get_operations() if op.type=='Conv2D' and 'import/' in op.name]
feature_nums = [int(graph.get_tensor_by_name(name+':0').get_shape()[-1]) for name in layers]
print('layers:', len(layers)) # 59
print('feature:', sum(feature_nums)) # 7548
# deep dream
def deep_dream(obj, img_noise=np.random.uniform(size=(224,224,3)) + 100.0, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4):
score = tf.reduce_mean(obj)
gradi = tf.gradients(score, X)[0]
img = img_noise
octaves = []
def tffunc(*argtypes):
placeholders = list(map(tf.placeholder, argtypes))
def wrap(f):
out = f(*placeholders)
def wrapper(*args, **kw):
return out.eval(dict(zip(placeholders, args)), session=kw.get('session'))
return wrapper
return wrap
def resize(img, size):
img = tf.expand_dims(img, 0)
return tf.image.resize_bilinear(img, size)[0,:,:,:]
resize = tffunc(np.float32, np.int32)(resize)
for _ in range(octave_n-1):
hw = img.shape[:2]
lo = resize(img, np.int32(np.float32(hw)/octave_scale))
hi = img-resize(lo, hw)
img = lo
octaves.append(hi)
def calc_grad_tiled(img, t_grad, tile_size=512):
sz = tile_size
h, w = img.shape[:2]
sx, sy = np.random.randint(sz, size=2)
img_shift = np.roll(np.roll(img, sx, 1), sy, 0)
grad = np.zeros_like(img)
for y in range(0, max(h-sz//2, sz),sz):
for x in range(0, max(w-sz//2, sz),sz):
sub = img_shift[y:y+sz,x:x+sz]
g = sess.run(t_grad, {X:sub})
grad[y:y+sz,x:x+sz] = g
return np.roll(np.roll(grad, -sx, 1), -sy, 0)
for octave in range(octave_n):
if octave>0:
hi = octaves[-octave]
img = resize(img, hi.shape[:2])+hi
for _ in range(iter_n):
g = calc_grad_tiled(img, gradi)
img += g*(step / (np.abs(g).mean()+1e-7))
# 保存图像
output_file = 'output' + str(octave+1) + '.jpg'
cv2.imwrite(output_file, img)
print(output_file)
# 加载输入图像
input_img = cv2.imread('input.jpg')
input_img = np.float32(input_img)
# 选择层
layer = 'mixed4c'
deep_dream(tf.square(graph.get_tensor_by_name("import/%s:0"%layer)), input_img)
将测试图片保存在工作目录并命名为input_jpg。
输入图像
输出图像
原文链接:http://blog.topspeedsnail.com/archives/10667